
!!!!!!

!!!!!!
!
!
!

An Introduction to
Puppet Enterprise

! !!!!!!!!!!!!!
Puppet Education

www.puppetlabs.com/education

© 2013 Puppet Labs

http://www.puppetlabs.com/education

Course Objective
After completing the course, students will be able to discuss the beneUts of the
Puppet solution as it applies to their own system automation business needs.

Intro to Puppet Enterprise 3.1.2 2 © 2013 Puppet Labs

Course Outline
• About Puppet

• Basic Puppet Concepts

• Classroom Environment

• Puppet Roles

• Modules and Classes

• ClassiUcation

• Puppet Forge

• Additional Puppet Concepts

• Questions & Next Steps

Intro to Puppet Enterprise 3.1.2 3 © 2013 Puppet Labs

About Puppet

About Puppet

Intro to Puppet Enterprise 3.1.2 4 © 2013 Puppet Labs

Overview: About Puppet
Objectives

At the end of this lesson, you will be able to:

• Identify the main challenges of scalable and repeatable infrastructure
management.

• Identify how Puppet or Puppet Enterprise can be used to overcome such
challenges.

• Identify Puppet community resources available to you.

• Identify Puppet Labs' pragmatic and user driven approach towards
conUguration management.

About Puppet

Intro to Puppet Enterprise 3.1.2 5 © 2013 Puppet Labs

About Puppet Labs
IT Automation Software for System Administrators:

• Founded in 2005

• First commercial product release in 2011

• 6,000 Community Members

• 20,000+ Users

• 50,000+ Nodes managed in the largest deployments

• Support for Red Hat, CentOS, Ubuntu, Debian, SUSE, Solaris 10, Windows, Mac
OS X

• Investments from Google Ventures, Cisco, VMware, Kleiner Perkins, and True
Ventures

Notes:

1. Puppet Labs has over 6 years of product and customer experience in the IT automation market.

2. We estimate that there are in total over 10 million nodes being managed worldwide by Puppet.

3. The number of users of open source software, paying customers, and partners all demonstrate
the tremendous market momentum Puppet has - it's becoming the "de facto" standard.

About Puppet

Intro to Puppet Enterprise 3.1.2 6 © 2013 Puppet Labs

Puppet Customers

Notes:
Some of the largest and fastest-growing companies in the world use Puppet, and it has been adopted
for IT automation by users in every major vertical market.

• The Puppet Community includes:

• Redhat (epel)

• Debian (stable)

• Ubuntu (main)

• Solaris (opencsw)

• Mac OSX (macports)

• ... and many more

• Activity:

• active mailing lists

• puppet-users@googlegroups.com

About Puppet

Intro to Puppet Enterprise 3.1.2 7 © 2013 Puppet Labs

• puppet-dev@googlegroups.com

• IRC channels, including community and Puppet employees

• #puppet on freenode.net

• #puppet-dev on freenode.net

• Contributions:

• hundreds of community members involved in the project

• hundreds of modules committed to the Puppet Forge

About Puppet

Intro to Puppet Enterprise 3.1.2 8 © 2013 Puppet Labs

Current State of IT Automation

Notes:
To address infrastructure management challenges, IT automation today offers a number of techniques
that often fall short, including the following:

• Manually ConUgure (literally logging in to every node to conUgure it)

• DifUcult to scale

• Impossible, for all intents and purposes, to maintain consistency from node-to-node

• Golden Images (creating a single copy of a node's software and replicating that across nodes)

• Need separate images for different deployment environments, eg, development, QA,
production, or different geo locations

• As number of images multiply it becomes very difUcult to keep track and keep
consistent

• Since they're monolithic copies, golden images are rigid and thus difUcult to update as
the business needs change

• Custom One-off Scripts (custom code written to address a speciUc, tactical problem)

About Puppet

Intro to Puppet Enterprise 3.1.2 9 © 2013 Puppet Labs

• No leverage - effort typically cannot be re-used for different applications or different
deployments

• Brittle - as needs change, the entire script must often be re-written

• DifUcult to maintain when the original author leaves the organization

• Software Packages (typically all or nothing approach)

• These packages typically require that all resources be placed under management -
cannot selectively adopt and scale automation

• As a result, longer deployment times

• Dated technology developed before virtualization and cloud computing - lacks
responsiveness to changing requirements

About Puppet

Intro to Puppet Enterprise 3.1.2 10 © 2013 Puppet Labs

Introducing Puppet
ConUguration Management for systems administrators.

• DISCOVER

• CONFIGURE

• and MANAGE infrastructure.

Notes:
Puppet provides a unique approach to IT automation for discovering, conUguring, and managing your
infrastructure. Puppet provides the following CUSTOMER BENEFITS:

• Productivity / EfUciency

• Most IT management solutions deliver efUciencies of 20-30 nodes per sysadmin.
Puppet enables 100s and even 1000s of nodes per sysadmin! Responsiveness To
Business Needs

• Using Puppet, our customers have dramatically reduced the time it takes them to
deliver applications into production, from weeks to days and even hours. Eliminate
ConUguration Drift

• With Puppet, your nodes (your servers, desktops, etc.) remain in the state you set for
them, dramatically improving service availability, reliability, scalability, and
performance.

About Puppet

Intro to Puppet Enterprise 3.1.2 11 © 2013 Puppet Labs

• Visibility

• Puppet provides rich data sets not only of infrastructure conUguration but also of any
changes to that infrastructure, whether under direct control of Puppet or not. You have
much more visibility into the changes occurring in your infrastructure over time and
their impact to service levels.

• Scalability:

• Manage thousands of systems from a central point.

• Reliably distribute system administrative tasks to staff.

• Consistency

• Ensure that systems are in the intended state.

• Eliminate inconsistency - QA/Staging/Production

• Improve velocity of new service delivery.

• Operational efUciency

• Spend less tracking system drift.

About Puppet

Intro to Puppet Enterprise 3.1.2 12 © 2013 Puppet Labs

Puppet Enterprise

Notes:
Puppet Labs' commercial product, Puppet Enterprise, offers additional beneUts in response to customer
requests for the following:

• a Puppet that is easier-to-use, to start solving problems faster.

• tools to get up-and-running quickly in private cloud and public cloud environments.

• tools to make the same changes simultaneously to clusters of nodes.

• additional tools to give them visibility into the state of their infrastructure.

Three of the major capabilities in Puppet Enterprise are shown in the slide above, as follows:
1. Graphical User Interface

• Right out-of-the-box, you can visually discover and manage resources without a
command line interface (CLI) or having to build a Puppet Module.

• CUSTOMER BENEFIT: Be productive, faster.

2. Cloud Provisioning
• Respond quickly to business demands by creating and conUguring additional capacity

for VMware private clouds or Amazon public clouds.

About Puppet

Intro to Puppet Enterprise 3.1.2 13 © 2013 Puppet Labs

• The same modules you built for internal, physical deployments can be re-used for
private and public cloud deployments.

• CUSTOMER BENEFIT: Respond quickly to business demands while maintaining
consistency across your deployment environments.

3. Orchestration
• Simultaneously deploy critical system updates, such as security patches, across clusters

of nodes with a single live management command.

• CUSTOMER BENEFIT: Maintains the model-based integrity and scalability of Puppet
while providing more direct "command-and-control".

About Puppet

Intro to Puppet Enterprise 3.1.2 14 © 2013 Puppet Labs

Puppet Enterprise Stack
SimpliUes installation and conUguration.

• PE Stack Elements include:

• Puppet Master and Agent
• Puppet Module Tool
• Puppet Enterprise Console
• Live Management

• Automatically conUgured to scale, with:

• Apache
• Passenger
• Rack/Rails

• All elements of the PE Stack are fully tested.

• Enterprise support is included.

Notes:
Puppet Enterprise simpliUes the installation and conUguration of the Puppet Stack, including:

1. Automatically conUgured to scale with the following supporting technologies and software (not
comprehensive):

• Open JDK

• ActiveMQ

• PostgreSQL

• Ruby 1.9.3

• Apache

• Rack/Rails

• Passenger

2. Puppet SpeciUc Supporting Tools:
• Facter

• Hiera

About Puppet

Intro to Puppet Enterprise 3.1.2 15 © 2013 Puppet Labs

• MCollective

• Puppet Module Tool

3. Puppet Enterprise Installable Roles:
• Puppet Agent

• Cloud Provisioner

• Puppet Master

• Puppet Console

• PuppetDB

Puppet Enterprise comes with an Enterprise Service Level Agreement

About Puppet

Intro to Puppet Enterprise 3.1.2 16 © 2013 Puppet Labs

Resources to Help You Succeed

Notes:
Puppet Labs offers a rich ecosystem to enable your success with Puppet Enterprise.
Services & Support

• Experienced team of senior Puppet practitioners provide Professional Services on-site.

• Standard (email 5x8) and Premium (phone 24x7) technical support services available.

The Forge--"This is how you can get started..."
• Hundreds of freely downloadable, customizable modules to help you get up-and-running

quickly.

• Includes Puppet code for applications, resources, operating systems, and more.

Training
• Introductory and advanced Puppet classes, both publicly available as well as customized on-

site, are available to help your team come up-to-speed quickly.

Partners
• Partner products complement Puppet's own capabilities and provide you with a "whole solution"

to the challenges you face.

About Puppet

Intro to Puppet Enterprise 3.1.2 17 © 2013 Puppet Labs

How Puppet Works

Notes:
Puppet's unique, model-based approach to automating discovery, conUguration, and management
follows four steps to automating your infrastructure: 1. DeUne, 2. Simulate, 3. Enforce, and 4. Report.

1. DeUne your infrastructure and its desired state.
• Use Puppet's domain speciUc language (DSL) to deUne the resources - users, services,

packages, anything - you want to manage

• You can also use one of the hundreds of pre-built, freely downloadable modules from
The Forge repository as a starting point

• You can choose to manage as few resources as a single Ule, or as many as all resources
on the entire node - it's totally up to you.

• CUSTOMER BENEFIT: These deUnitions are now both re-useable and portable across
operating systems, deployment environments (physical, virtual, public cloud)

2. Simulate these resource deUnitions
• The model-based approach is what allows Puppet to simulate conUguration changes

without impacting anything in production

• This allows you to understand the impact of these changes on your IT environment
before putting them into production

About Puppet

Intro to Puppet Enterprise 3.1.2 18 © 2013 Puppet Labs

• CUSTOMER BENEFIT: The result is a much more visible and controlled change
management of IT automation conUguration, resulting in higher service levels

3. Enforce the desired state of your infrastructure
• Once these deUnitions are in production, the Puppet Agent checks their actual state

against the Puppet Master server every 30 minutes.

• If the state of an Agent's deUnitions has drifted or experienced an unauthorized change,
Puppet can automatically revert them back into its originally deUned, desired state.

• CUSTOMER BENEFIT: The result is the elimination of conUguration drift.

4. Report on the state of your infrastructure
• The last step is to aggregate all the changes to the desired state of resources across all

nodes into a single report.

• This gives you complete visibility into the types of changes, the rate of those changes,
who is making those changes, etc.

• CUSTOMER BENEFIT: The result is that you're able to understand how changes in your
infrastructure impact changes in service levels, including availability, reliability,
performance, etc.

About Puppet

Intro to Puppet Enterprise 3.1.2 19 © 2013 Puppet Labs

How Puppet Works
DeUne

Notes:
As the source of many of the beneUts customers receive from Puppet, this slide highlights a few more
details about the Urst step of the process, the De8ne step:

• Puppet's human-readable DSL enables you to specify and manage your infrastructure with
deUned models of your infrastructure, not procedures.

• Complete services and applications--web servers, database servers, application services--can be
built from collections of modules. Thus, Puppet allows you to compose, conUgure, and manage
your infrastructure using re-usable "building block" components.

• Because these models are centrally managed, you can make changes once, test them, and then
deploy to multiple nodes.

• This ensures that each resource (your web server, or database server, or application servers) get
the right conUguration every time.

• And with Puppet's resource abstraction layer the conUgurations are re-usable and portable
across any supported operating system, as well as virtual and cloud environments.

About Puppet

Intro to Puppet Enterprise 3.1.2 20 © 2013 Puppet Labs

How Puppet Works
DeUne

Notes:
This is an example of actual Puppet code, designed to be simple and easy to read and write.
With the above lines of code, Puppet will:

• Install the package for the SSH suite

• Install a conUguration Ule for the SSH server

• Make sure the service is up and running

This very simple but useful model of the "SSH service" may now be ported and re-used:
• across multiple operating systems--Red Hat, Solaris, Ubuntu

• across application lifecycle phases--development, QA, production

• across multiple deployment environments--physical, virtual, private cloud, public cloud

If there's a need to change this model in the future, it can be changed in one location and deployed to
all the appropriate nodes, maintaining the consistency and integrity of the model.

About Puppet

Intro to Puppet Enterprise 3.1.2 21 © 2013 Puppet Labs

How Puppet Works
Composable ConUgurations

Notes:
Complete services and applications--web servers, database servers, application services--can be built
from collections of modules.
Modules are self-contained bundles of code and data.
Puppet allows system admins to compose, conUgure, and manage their infrastructure using re-usable
"building block" components.
To help users get started, Puppet has hundreds of freely downloadable modules for resources,
applications, and services at The Forge (forge.puppetlabs.com).

About Puppet

Intro to Puppet Enterprise 3.1.2 22 © 2013 Puppet Labs

Data Flow
How Puppet manages data Vow from Individual Nodes

Notes:
A look at how deUnitions are used to automatically conUgure and manage IT infrastructure:

1. The Puppet Agent on the node tells the Puppet Master information about itself (hostname, node
name, operating system, etc.).

2. The Puppet Master looks up the conUguration for that node and sends a Catalog representing
that intended conUguration back to the node.

3. The node reports back any actions that were taken to enforce that conUguration.

4. The Puppet Master server aggregates all the reports from all the nodes and provides a single
overview on the state of your infrastructure.

About Puppet

Intro to Puppet Enterprise 3.1.2 23 © 2013 Puppet Labs

Basic Puppet Concepts

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 24 © 2013 Puppet Labs

Lesson 2: Basic Puppet Concepts
Objectives

At the end of this lesson, you will be able to:

• Identify the core components of the Puppet system management solution.

• Differentiate between declarative and imperative system conUguration.

• Explain the main beneUts of Puppet IT Automation Software.

• Read the basic syntax of Puppet declarations.

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 25 © 2013 Puppet Labs

A Use Case
You need to manage a user, Elmo.

You care speciUcally about:

• his existence

• his primary group

• his home directory

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 26 © 2013 Puppet Labs

Existing Utilities
Tools built into most distros that can help:

• useradd

• usermod

• groupadd

• groupmod

• mkdir

• chmod

• chgrp

• chown

Notes:
These are just some of the built-in commands that would help you solve this problem. For the purpose
of this thought exercise, we're looking at built-in system tools, not dedicated user management
solutions.

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 27 © 2013 Puppet Labs

Command Line Concerns
• Platform idiosyncrasies:

• Does this box have useradd or adduser? Oh, superadduser.
Super.

• What was that Vag again?

• What is the difference between -l and -L?

• What does -r mean?

• Recurse
• Remove read privileges
• System user

• If I run this command again, what will it do?

Notes:

• If you're tasked with managing multiple platforms, you may have encountered tools that are
named differently and whose option Vags behave differently.

• Many commands behave correctly when you run them multiple times, but some don't. The
proceedural nature does not give you consistent behavior without the need for extra logic.

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 28 © 2013 Puppet Labs

Do It Yourself
You could do something like this:

#! /bin/sh

USER=$1; GROUP=$2; HOME=$3

if [0 -ne $(getent passwd $USER > /dev/null)$?]
then useradd $USER --home $HOME --gid $GROUP -n; fi

OLDGID=`getent passwd $USER | awk -F: '{print $4}'`
OLDGROUP=`getent group $OLDGID | awk -F: '{print $1}'`
OLDHOME=`getent passwd $USER | awk -F: '{print $6}'`

if ["$GROUP" != "$OLDGID"] && ["$GROUP" != "$OLDGROUP"]
then usermod --gid $GROUP $USER; fi

if ["$HOME" != "$OLDHOME"]
then usermod --home $HOME $USER; fi

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 29 © 2013 Puppet Labs

But what about...
• Robust error checking?

• Solaris and Windows support?

• Robust logging of changes?

• Readable code?

And managing users is easy.

How would you keep cronjobs, packages, and services in a consistent state across your
infrastructure?

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 30 © 2013 Puppet Labs

The Puppet Way
A light at the end of the tunnel:

user { 'elmo':
ensure => present,
gid => 'sysadmin',
home => '/mnt/home/elmo',
managehome => true,

}

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 31 © 2013 Puppet Labs

Desired State
Describe the state you want.

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 32 © 2013 Puppet Labs

Robust Logging
Any convergence actions are reported.

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 33 © 2013 Puppet Labs

Maintaining State
• You provision a node.

• Puppet conUgures it.

• Puppet maintains the desired state.

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 34 © 2013 Puppet Labs

Infrastructure as Code
or Executable Documentation

class sysadmins {

user { 'elmo':
ensure => present,
gid => 'sysadmin',
home => '/home/sysadmins/elmo',
managehome => true,

}

group { 'sysadmin':
ensure => present,

}

}

• Descriptive

• Straightforward

• Transparent

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 35 © 2013 Puppet Labs

Idempotency
Puppet enforces in an idempotent way.

First Puppet Run
notice: /Group[sysadmin]/ensure: created
notice: /User[elmo]/ensure: created
notice: Finished catalog run in 0.08 seconds

Second Puppet Run
notice: Finished catalog run in 0.03 seconds

Idempotence:
The property of certain operations in mathematics or computer science in that they
can be applied multiple times without further changing the result beyond the initial
application.

Notes:

• Idempotent - able to be applied multiple times with the same outcome.

• Puppet resources are idempotent, since they describe a desired Unal state rather than a series of
steps to follow.

• Source: Puppet Docs - http://docs.puppetlabs.com/references/glossary.html#idempotent

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 36 © 2013 Puppet Labs

http://docs.puppetlabs.com/references/glossary.html#idempotent

Puppet Resources
• Resources are building blocks.

• They can be combined to make larger components.

• Together they can model the expected state of your system.

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 37 © 2013 Puppet Labs

Resource Declarations
Resources are managed in terms of attributes.

• Instruct Puppet to manage a package:

package { 'openssh':
ensure => present,

}

• Instruct Puppet to manage a user:

user { 'elvis':
ensure => absent,

}

Attributes describe the state that Puppet should converge the resource to.

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 38 © 2013 Puppet Labs

User Resource
Sample Attributes

• uid: The user's uid number.

• gid: The user's primary group. Numeric or name.

• home: The user's home directory.

• shell: The user's login shell.

Want to know more?

$ puppet describe user

- **comment**
A description of the user. Generally the user's full name.

- **ensure**
The basic state that the object should be in. Valid values are
`present`, `absent`, `role`.

......

......

Notes:
puppet describe takes a resource type as an argument. It returns detailed documentation on that
speciUc resource type.

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 39 © 2013 Puppet Labs

Resource Declarations
Type is 'user'
Title is 'elmo'
user { 'elmo':

ensure => present, # The attribute 'ensure' is set to 'present'
gid => 'sysadmin', # The attribute `gid` is set to `sysadmin`

}

• Type and title pairs must be unique for a node.

Notes:

• Declarations start with the resource type in lowercase.

• Curly braces deUne the resource block.

• Separate the title from body with a colon.

• Body consists of a list of attributes and values.

• Use alphanumerics & quote strings.

• Best practice suggestions:

• You should quote strings, even when not strictly required.

• You should include a comma after the last attribute in a block because it reduces
maintenance errors.

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 40 © 2013 Puppet Labs

Declarative Modeling Language
• Model the desired state.

• Let Puppet Ugure out how to enforce it.

Comparison
Imperative Declarative

if [0 -ne $(getent passwd elmo > /dev/null)$?]
then

useradd elmo --gid sysadmin -n
fi

GID=`getent passwd elmo | awk -F: '{print $4}'`
GROUP=`getent group $GID | awk -F: '{print $1}'`

if ["$GROUP" != "$GID"] && ["$GROUP" != "sysadmin"]
then

usermod --gid $GROUP $USER
fi

user { 'elmo':
ensure => present,
gid => 'sysadmin',

}

if ["`getent group sysadmin | awk -F: '{print $1}'`" == ""]
then

groupadd sysadmin
fi

group { 'sysadmin':
ensure => present,

}

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 41 © 2013 Puppet Labs

Abstraction
Resources in Puppet are abstracted from underlying providers.
package { 'ssh':

ensure => present,
name => $::operatingsystem ? {

'RedHat' => 'openssh',
'Ubuntu' => 'ssh',

},
}

yum install mysql-server

apt-get install mysql-server

Notes:
Speci$cation in the Puppet DSL translates to Implementation via the provider chosen for the platform the
agent is running on.

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 42 © 2013 Puppet Labs

Resource Abstraction Layer
Provides a consistent model for resources across supported platforms.

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 43 © 2013 Puppet Labs

Types
Similar resources are grouped into resource types.

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 44 © 2013 Puppet Labs

Providers
Each resource type has one or more providers.

The interface between the underlying OS and the resource types.

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 45 © 2013 Puppet Labs

Many Providers
Providers for the package type:

[root@training ~]# ls /opt/puppet/lib/ruby/[...]/puppet/provider/package
aix.rb fink.rb opkg.rb ports.rb windows
appdmg.rb freebsd.rb pacman.rb portupgrade.rb windows.rb
apple.rb gem.rb pip.rb rpm.rb yumhelper.py
aptitude.rb hpux.rb pkgdmg.rb rug.rb yumhelper.pyc
apt.rb macports.rb pkgin.rb sunfreeware.rb yumhelper.pyo
aptrpm.rb msi.rb pkg.rb sun.rb yum.rb
blastwave.rb nim.rb pkgutil.rb up2date.rb zypper.rb
dpkg.rb openbsd.rb portage.rb urpmi.rb

Notes:
Some package types can retrieve their own package Ules, while others cannot. For those package
formats that cannot retrieve their own package Ules, you can use the source parameter to point to the
correct Ule or URI.
For the most current information regarding Provider packages please see:

• http://docs.puppetlabs.com/references/latest/type.html#package

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 46 © 2013 Puppet Labs

http://docs.puppetlabs.com/references/latest/type.html#package

Enforcement Order
Puppet enforces resources based on dependencies between them.

Notes:
Sometimes certain resources must be enforced in a certain order. For example, a group must exist before
a user can be added to that group. As Puppet is enforcing the catalog, it should enforce the group before
the user. It uses dependencies to determine this.
The order that we type resources into our manifests is irrelevant. Puppet will construct a dependency
graph to determine the enforcement order. In a later lesson, we will learn how to describe these
dependencies to Puppet.

• Directed Acyclic Graph:

• A hierarchical graph with directed arrows between nodes.

• Each node represents a resource and the arrows represent dependencies between the
resources.

• There can be no cycles or circles in the dependencies.

• Puppet starts at the top and "walks" the graph to turn it into a serial list of resources to enforce.

Basic Puppet Concepts

Intro to Puppet Enterprise 3.1.2 47 © 2013 Puppet Labs

Classroom Environment

Classroom Environment

Intro to Puppet Enterprise 3.1.2 48 © 2013 Puppet Labs

Lesson 3: The Classroom Environment
Objectives

At the end of this lesson, you will be able to:

• Complete the steps of setting up a Puppet Master and Agent on your local
machine.

• Use the Puppet Facter tool to display system facts in the classroom setup.

• Explain the concepts behind Puppet resources and use the Puppet Resource
tool.

Classroom Environment

Intro to Puppet Enterprise 3.1.2 49 © 2013 Puppet Labs

Lab 3.1: Pre-installation

• Objective:

• Assign a hostname to your agent and make that name persist
across reboots.

• Steps:

• Edit your systems host Ule (i.e. /etc/hosts).

• ConUgure your system's hostname.
• Ensure your system's time is synced. ntpdate

pool.ntp.org

Classroom Environment

Intro to Puppet Enterprise 3.1.2 50 © 2013 Puppet Labs

Lab 3.2: Installation

• Objective:

• Install the Puppet Master and Agent on your virtual machine
and explore some of the basic functionality of Puppet
Enterprise.

• Steps:

• Create an answer Ule for your puppet agent installation.
• Install your Puppet Master and Agent using the answer Ule

you created.
• Explore some basic command line functions in Puppet as

outlined in the Exercise and Lab Guide.

Notes:
This course uses Puppet Enterprise for all labs and exercises, so we are installing the Enterprise of our
Software at this point. However, the principles and concepts taught in this course apply equally to
Puppet Open Source, unless speciUcally designated as Puppet Enterprise only in the course materials.
Because we are creating a classroom environment where all students connect to a central master, we
are installing only the agent in this exercise and explicitly responding "no" to the question whether to
install the master. A central installation of Puppet Master for the classroom is being demo'd by the
instructor.
If you wanted to install a Puppet Master server, you would instead answer "yes" to the same question
and would be presented with additional options to conUgure your master as well as your agent while
executing the installation script.
If you are using Puppet Open Source, see http://docs.puppetlabs.com/guides/installation.html for
installation documentation.
For further documentation on installing Puppet Enterprise, see http://docs.puppetlabs.com/pe/latest/
install_basic.html and http://docs.puppetlabs.com/guides/troubleshooting.html.

Classroom Environment

Intro to Puppet Enterprise 3.1.2 51 © 2013 Puppet Labs

http://docs.puppetlabs.com/guides/installation.html
http://docs.puppetlabs.com/pe/latest/install_basic.html
http://docs.puppetlabs.com/pe/latest/install_basic.html
http://docs.puppetlabs.com/guides/troubleshooting.html

Facter
• Puppet uses facter to gather information about the host system.

• Executing the facter command returns a list of key value pairs.

[root@training ~]# facter
architecture => x86_64
domain => puppetlabs.com
facterversion => 1.5.2
fqdn => training.puppetlabs.lan
hardwaremodel => x86_64
hostname => aku
interfaces => eth0
ipaddress => 172.16.10.1
kernel => Linux
operatingsystem => Ubuntu
...

• The returned key value pairs are facts.

Notes:

• Facter is Puppet's system inventory tool. Facter reads facts about a node (such as its hostname,
IP address, operating system, etc.) and makes them available to Puppet.

• Facter includes a large number of built-in facts. You can view their names and values for the
local system by running facter at the command line.

• In agent/master Puppet arrangements, agent nodes send their facts to the master, and the
master compiles the catalog using these facts.

Classroom Environment

Intro to Puppet Enterprise 3.1.2 52 © 2013 Puppet Labs

Exercise 3.3: Facter

• Objective:

• Become familiar with the use of facter.

• Steps:

• Execute facter ipaddress.

• What is returned?

• Execute facter operatingsystem.

• What is returned?

• Execute facter.

• What is returned?

Classroom Environment

Intro to Puppet Enterprise 3.1.2 53 © 2013 Puppet Labs

Puppet Resource
• A command line tool for inspecting puppet resources on the system.

• It interacts directly with the Resource Abstraction Layer (RAL).

Classroom Environment

Intro to Puppet Enterprise 3.1.2 54 © 2013 Puppet Labs

Puppet Resource Query
Executing puppet resource and providing a resource type and title

returns the state of a resource.
[root@training ~]# puppet resource user elvis

user { 'elvis':
ensure => absent,

}

Classroom Environment

Intro to Puppet Enterprise 3.1.2 55 © 2013 Puppet Labs

Puppet Resource Query
Executing puppet resource and providing a resource type queries all

known instances of that resource on the system.
[root@training ~]# puppet resource user

....
user { 'vcsa':

ensure => present,
uid => '69',
gid => '69',
shell => '/sbin/nologin',
comment => 'virtual console memory owner',
home => '/dev',

}
user { 'willywonka':

ensure => present,
uid => '1006',
gid => '1008',
shell => '/bin/bash',
home => '/home/willywonka',

}

Classroom Environment

Intro to Puppet Enterprise 3.1.2 56 © 2013 Puppet Labs

Exercise 3.4: Puppet Resource

• Objective:

• Use puppet resource to inspect user accounts.

• Steps:

• Create your user account manually with useradd (ex.
useradd elmo).

• Using puppet resource, inspect your user account on
your system.

• Add a password to your account and see how it affects the
output.

Classroom Environment

Intro to Puppet Enterprise 3.1.2 57 © 2013 Puppet Labs

Puppet Roles

Puppet Roles

Intro to Puppet Enterprise 3.1.2 58 © 2013 Puppet Labs

Lesson 4: Puppet Roles
Objectives

At the end of this lesson, you will be able to:

• Describe the roles of the agent and the master.

• Identify how the Puppet Catalog Uts into Puppet workVow.

• Recognize standard module paths.

• Describe node classiUcation.

• Describe the SSL relationship between agent and master.

Puppet Roles

Intro to Puppet Enterprise 3.1.2 59 © 2013 Puppet Labs

Puppet Configuration Management

Puppet Roles

Intro to Puppet Enterprise 3.1.2 60 © 2013 Puppet Labs

The Agent Daemon
puppet agent runs on all managed nodes.

• It is responsible for:

• Initiating a secure and authenticated connection to the Puppet Master.
• Sending information about its current state.
• Enforcing a retrieved catalog.

Notes:
The catalog is an object that represents the desired end-state of a node.

Puppet Roles

Intro to Puppet Enterprise 3.1.2 61 © 2013 Puppet Labs

Example Configuration
/etc/puppetlabs/puppet/puppet.conf

[main]
vardir = /var/opt/lib/pe-puppet
logdir = /var/log/pe-puppet
rundir = /var/run/pe-puppet

[agent]
certname = webdb1
server = puppet

Notes:
Other conUguration variables of interest:

• vardir: location where Puppet stores dynamically growing information.

• rundir: location where Puppet PID Ules are stored.

• ssldir: location where SSL certiUcates are stored.

• ca_server: the server to use for certiUcate authority requests.

• certname: the certiUcate name to use when communicating with the master.

• server: the host name of the puppetmaster.

Puppet Roles

Intro to Puppet Enterprise 3.1.2 62 © 2013 Puppet Labs

Useful Command Line Arguments
• --test

• --no-daemonize

• --verbose

• --onetime

• --noop

• --debug

• --tags

• --environment <env>

• --configprint

• --genconfig

Puppet Roles

Intro to Puppet Enterprise 3.1.2 63 © 2013 Puppet Labs

The Master Daemon
puppet master runs on the central server.

• It is responsible for:

• authenticating agent connections.
• signing certiUcates.
• compiling manifests into a catalog.
• serving that catalog to the agent.
• serving Ules.

Puppet Roles

Intro to Puppet Enterprise 3.1.2 64 © 2013 Puppet Labs

Agent/Master Architecture

Notes:
The only information transmitted between the Master and Agent is the Facts submitted by the Agent
and the Catalog returned by the Master. This means that the Master has no inherent knowledge of any
other state on the Agent and the Agent sees none of the Puppet source code used to generate the
catalog.

Puppet Roles

Intro to Puppet Enterprise 3.1.2 65 © 2013 Puppet Labs

Puppet Enterprise Console
Provides a graphical interface to your Puppet infrastructure.

• It is responsible for:

• presenting an overview of your systems.
• providing detailed information about each node.
• collating and displaying statistics.
• providing an interface for node classiUcation.
• enabling report browsing and viewing.

Puppet Roles

Intro to Puppet Enterprise 3.1.2 66 © 2013 Puppet Labs

Infrastructure Overview

Puppet Roles

Intro to Puppet Enterprise 3.1.2 67 © 2013 Puppet Labs

Node Details and Statistics

Puppet Roles

Intro to Puppet Enterprise 3.1.2 68 © 2013 Puppet Labs

Browsing Latest Reports

Puppet Roles

Intro to Puppet Enterprise 3.1.2 69 © 2013 Puppet Labs

Viewing a Report

Puppet Roles

Intro to Puppet Enterprise 3.1.2 70 © 2013 Puppet Labs

Demo
Viewing report details in Console

Puppet Roles

Intro to Puppet Enterprise 3.1.2 71 © 2013 Puppet Labs

Certificate Management
• The Puppet Master serves as a certiUcate authority for all connected agents.

• All agents must have valid signed certiUcates to request a catalog.

• The puppet cert command allows you to manage client and server
certiUcates.

Puppet Roles

Intro to Puppet Enterprise 3.1.2 72 © 2013 Puppet Labs

Puppet Agent Bootstrap
• When a puppet agent runs for the Urst time, it:

• generates a new certiUcate.
• sends a CSR to the server to be signed.
• checks for a signed cert every two minutes (by default).

Unless autosigning is enabled, each new certiUcate must be signed explicitly.

Notes:
Autosigning is not considered to be best practice as there is reduced visibility into which agents exist on
your network. It should only be enabled when the network layer is fully trusted and there is no concern
of agent impersonation.

Puppet Roles

Intro to Puppet Enterprise 3.1.2 73 © 2013 Puppet Labs

Working With Certificates
List Outstanding CertiUcates

[root@training ~]# puppet cert list
puppetagent.localdomain

• CertiUcates waiting to be signed.

• The PE installer signs the certiUcates it generates.

Puppet Roles

Intro to Puppet Enterprise 3.1.2 74 © 2013 Puppet Labs

Working With Certificates
List All CertiUcates

[root@training ~]# puppet cert list --all
agent1.puppetlabs.lan (SHA256) (81:26:14:B8:B1:3B:66:2C:8F:
+ training.puppetlabs.lan (SHA256) (C0:E9:1F:D8:D8:4C:3D:2E:53:
(alt names: DNS:training, DNS:training.puppetlabs.lan, DNS:puppet)
+ pe-internal-broker (SHA256) (88:8E:E7:E8:A6:ED:92:62:97:
(alt names: DNS:training.puppetlabs.lan, DNS:pe-internal-broker, DNS:stomp)
+ pe-internal-mcollective-servers (SHA256) (41:68:35:6E:09:03:89:37:DA:
+ pe-internal-peadmin-mcollective-client (SHA256) (22:7B:F5:30:FA:93:52:E9:11:
+ pe-internal-puppet-console-mcollective-client (SHA256) (EF:C3:49:27:9B:89:2B:18:FA:
- agent_retire.localdomain (SHA256) (32:C9:BD:23:1D:41:6F:EF:88:

• '+' indicates an active & signed certiUcate

• '-' indicates a revoked certiUcate

• '' (empty) indicates a pending certiUcate

Puppet Roles

Intro to Puppet Enterprise 3.1.2 75 © 2013 Puppet Labs

Working With Certificates
Sign a certiUcate

[root@training ~]# puppet cert sign agent1.puppetlabs.lan
notice: Signed certificate request for agent1.puppetlabs.lan
notice: Removing file Puppet::SSL::CertificateRequest agent1.puppetlabs.lan ...

Revoke a certiUcate
[root@training ~]# puppet cert revoke agent_retire.puppetlabs.lan
notice: Revoked certificate with serial 8

Remove a certiUcate
[root@training ~]# puppet cert clean agent_retire.puppetlabs.lan
notice: Revoked certificate with serial 8
notice: Removing file Puppet::SSL::Certificate agent_retire.puppetlabs.lan ...
notice: Removing file Puppet::SSL::Certificate agent_retire.puppetlabs.lan ...
notice: Removing file Puppet::SSL::Key agent_retire.puppetlabs.lan at '/etc...

(output trimmed for slide)

Puppet Roles

Intro to Puppet Enterprise 3.1.2 76 © 2013 Puppet Labs

Working With Certificates
Pre-create certiUcates on the master.

[root@training ~]# puppet cert generate kermit.puppetlabs.com
notice: kermit.puppetlabs.com has a waiting certificate request
notice: Signed certificate request for kermit.puppetlabs.com
notice: Removing file Puppet::SSL::CertificateRequest kermit.puppetlabs.com at '/etc/puppetlabs/puppet/ssl/ca/requests/kermit.puppetlabs.com.pem'
notice: Removing file Puppet::SSL::CertificateRequest kermit.puppetlabs.com at '/etc/puppetlabs/puppet/ssl/certificate_requests/kermit.puppetlabs.com.pem'

• Can be used as part of your provisioning process.

• Simply transfer the generated certiUcates onto the freshly built system.

• When the agent starts for the Urst time, it's already authorized to request a
catalog from the master.

Puppet Roles

Intro to Puppet Enterprise 3.1.2 77 © 2013 Puppet Labs

Signing Certificates with PE Console
• Before PE 2.7

• CertiUcate signing had to be done manually via command line.

• Starting with PE 2.7

• PE Console added the capability to view and respond to Node
requests graphically.

• Node requests can be approved or rejected in the PE Console without
login access to the Puppet Master.

• Users with read/write privileges in the PE Console can take action on
node requests.

Puppet Roles

Intro to Puppet Enterprise 3.1.2 78 © 2013 Puppet Labs

Viewing Node Requests

Notes:

• Click on the pending nodes indicator to view and manage current requests. This will bring up a
view containing a list of all the pending node requests.

• Each item on the list shows the node's name and its corresponding CSR's Ungerprint.

• Click on any truncated Ungerprint to view the entire Ungerprint in a pop-up.

Puppet Roles

Intro to Puppet Enterprise 3.1.2 79 © 2013 Puppet Labs

Rejecting and Approving Node Requests

Notes:

• In some cases, you may see the message Cannot accept or reject this request.

Puppet Roles

Intro to Puppet Enterprise 3.1.2 80 © 2013 Puppet Labs

• This is often because DNS altnames have been used. You cannot use the console to approve/
reject such node requests. The CSR for those nodes must be accepted or rejected using puppet
cert on the CA. For more information, see the DNS altnames entry in the reference guide.

• In some cases, attempting to accept or reject a node request will result in an error. This is
typically because the request has been modiUed somehow, usually by being accepted or
rejected elsewhere (e.g. by another user or from the CLI) since the request was Urst generated.

• Accepted/rejected nodes will remain displayed in the console for 24 hours after the action is
taken. This interval cannot be modiUed. However, you can use the "Clear accepted/rejected
requests" button to clean up the display at any time.

Puppet Roles

Intro to Puppet Enterprise 3.1.2 81 © 2013 Puppet Labs

Demo
Triggering a Puppet Run

Puppet Roles

Intro to Puppet Enterprise 3.1.2 82 © 2013 Puppet Labs

Modules and Classes

Modules and Classes

Intro to Puppet Enterprise 3.1.2 83 © 2013 Puppet Labs

Lesson 5: Modules and Classes
Objectives

At the end of this lesson, you will be able to:

• Describe Puppet modules and classes.

• Describe the structure of a Puppet module.

• Identify the beneUts of using a module to contain conUguration.

• Identify the concept of autoloading content in modules.

• Differentiate between deUning and declaring classes.

Modules and Classes

Intro to Puppet Enterprise 3.1.2 84 © 2013 Puppet Labs

Puppet Classes
Classes deUne a collection of resources that are managed together as a single unit.

/etc/puppetlabs/puppet/modules/ssh/manifests/init.pp

class ssh {

package { 'openssh-clients':
ensure => present,

}

file { '/etc/ssh/ssh_config':
owner => 'root',
group => 'root',
mode => '0644',
require => Package['openssh-clients'],
source => 'puppet:///modules/ssh/ssh_config',

}

service { 'sshd':
ensure => stopped,
enable => false,

}

}

Notes:

• Stated another way, package, file, and service are individual Puppet resources bundled
together to deUne a single idea, or class.

• Class deUnitions are contained in manifests. The init.pp Ule above is an example of a
manifest written in Puppet DSL.

• Note that there is a trailing comma after the last attribute in each resource above. This is not
required, but is best practices because it reduces the chances of errors throughout the lifetime
of the manifest Ule.

Modules and Classes

Intro to Puppet Enterprise 3.1.2 85 © 2013 Puppet Labs

Node Definitions
Multiple classes are declared together to represent a role.

For example, to build a web application from Puppet classes on
oscar.example.com:

node 'oscar.example.com' {
include ssh
include apache
include mysql
include web-app

}

Notes:
This is a node deUnition which represents the agent machine and the classes that compose its Puppet
conUguration. When the node oscar.example.com requests a catalog from the master, these classes
will be used to build it.
Node deUnitions can match based on simple strings, like above, or they can match based on regular
expressions. Regular expressions are only used when no exact match is found, and they are compared in
order until a regex matches, regardless of speciUcity.
Best practices are to avoid any complex logic in node deUnitions and simply include the required
classes. This leads to a conUguration model that is more readable and more composable. It also makes
the transition to an External Node ClassiUer like the Enterprise Console a painless process.

Modules and Classes

Intro to Puppet Enterprise 3.1.2 86 © 2013 Puppet Labs

Classes are Reusable
If a more complex deployment is needed, reusing existing classes saves effort and
reduces error.

Modules and Classes

Intro to Puppet Enterprise 3.1.2 87 © 2013 Puppet Labs

Classes are Singleton
Classes must be unique and can only used once on a given node.

class ssh {
package { 'ssh':

ensure => present,
}
file { '/etc/ssh/sshd_config':

ensure => file,
owner => 'root',
group => 'root',

}
service { 'sshd':

ensure => running,
enable => true,

}
}

include ssh
include ssh

You only ever get one instance of the class in the catalog.

Notes:
In most cases, classes can be included multiple times. Puppet is smart enough to only declare the class
once. This means that best practices are to include a class when it's going to be referenced, even if that
means that it may be included many times.

Modules and Classes

Intro to Puppet Enterprise 3.1.2 88 © 2013 Puppet Labs

Modules
Modules are directories that contain your conUguration. They are designed to
encapsulate all of the components related to a given conUguration in a single folder
hierarchy.

• They have a pre-deUned structure that enable the following:

• auto-loading of classes
• Ule-serving for templates and Ules
• auto-delivery of custom Puppet extensions
• easy sharing with others

Modules and Classes

Intro to Puppet Enterprise 3.1.2 89 © 2013 Puppet Labs

Auto-loading of Classes
import is considered harmful.

Previous versions of Puppet required you to manually import source code Ules.

import '/etc/puppet/path/to/your/manifest.pp'

• This isn't manageable past a dozen or so manifests.

• Doesn't encourage reusable code.

• Not best practice and mostly obsolete.

Notes:
Puppet source code Ules are commonly referred to as manifests.

You should generally avoid the import keyword. It was introduced to the language before modules
existed, and was rendered mostly obsolete once Puppet could autoload classes and deUned types from
modules.
The one modern use for importing is to allow node deUnitions to be stored in several Ules. However,
note that this requires you to restart the puppet master or touch site.pp whenever you edit your
nodes. This practice is also mostly obsoleted by modern node classiUcation schemes.

Modules and Classes

Intro to Puppet Enterprise 3.1.2 90 © 2013 Puppet Labs

Auto-loading of Classes
Modules enable class auto-discovery.

• First, Puppet needs to know where to Und your modules.

puppet.conf on puppet master
[master]

modulepath=/etc/puppetlabs/puppet/modules

• Then, your classes are placed in this predictable structure.

[root@training ~]# tree /etc/puppetlabs/puppet/modules/ssh/
...
├── manifests

├── init.pp ## class ssh { ... }
└── server.pp ## class ssh::server { ... }

• Puppet expects to Und classes in the manifests directory of your module.

Modules and Classes

Intro to Puppet Enterprise 3.1.2 91 © 2013 Puppet Labs

Auto-loading of Classes
Class names can be broken into namespaces.

Class names map directly to where Puppet expects to Und them.

• The Urst segment in a name identiUes the module.

• The Unal segment in a name identiUes the Ulename.

• Any intermediary segments are evaluated as subdirectories of the module's
manifests directory.

• The module's default class is located in the manifests/init.pp Ule and
has the same name as the module itself.

[root@training ~]# tree /etc/puppetlabs/puppet/modules/apache/
...
├── manifests

├── init.pp ## class apache { ... }
├── mod
│ └── php.pp ## class apache::mod::php { ... }
└── mod.pp ## class apache::mod { ... }

Where would we expect to Und the class foo::bar::baz?

Modules and Classes

Intro to Puppet Enterprise 3.1.2 92 © 2013 Puppet Labs

Lab 5.1: Build Your First Module

• Objective:

• Construct and test a Puppet Module to manage a user
account introduction.

• Steps:

• Create the module directory structure & support Ules.
• Validate the syntax of your user class.

Notes:
What happens if you run puppet apply against your init.pp manifest?

Modules and Classes

Intro to Puppet Enterprise 3.1.2 93 © 2013 Puppet Labs

Define and Declare
Now that we have built our class, how do we use it?

de8ne:
To specify the contents and behavior of a class. DeUning a class doesn't
automatically include it in a conUguration; it simply makes it available to be
declared.

declare:
To direct Puppet to include or instantiate a given class. To add classes, use the
include keyword or the class {'foo':} syntax.

Notes:
From Puppet Docs:

• deUne -- http://docs.puppetlabs.com/references/glossary.html#deUne

• declare -- http://docs.puppetlabs.com/references/glossary.html#declare

Modules and Classes

Intro to Puppet Enterprise 3.1.2 94 © 2013 Puppet Labs

http://docs.puppetlabs.com/references/glossary.html#define
http://docs.puppetlabs.com/references/glossary.html#declare

Defining vs Declaring
When you build a class like the following, you are deUning it.

class ssh {
package { 'openssh-clients':

ensure => present,
}
file { '/etc/ssh/ssh_config':

owner => 'root',
group => 'root',
mode => '0644',
require => Package['openssh-clients'],
source => 'puppet:///modules/ssh/ssh_config',

}
service { 'sshd':

ensure => stopped,
enable => false,

}
}

To use it, you need to declare the class.

include ssh

Declaring a class instructs Puppet to enforce the class.

Notes:
You may have seen the resource-like class declaration syntax:

class classname { 'title': }

This is designed for Parameterized Classes and will be covered in the "Advanced Classes" lesson and in
the Advanced Puppet training course.

Modules and Classes

Intro to Puppet Enterprise 3.1.2 95 © 2013 Puppet Labs

Declaration Testing
Preparing to test our declarations:

• Save example usage (class declarations) with the module.

• ad hoc testing during development
• example usage when sharing with others

[root@training ~]# tree /etc/puppetlabs/puppet/modules/ssh
├── manifests
│ ├── init.pp ## class ssh { ... }
│ └── server.pp ## class ssh::server { ... }
└── tests

├── init.pp ## include ssh
└── server.pp ## include ssh::server

Each smoke test should declare the class it is testing.

/etc/puppetlabs/puppet/modules/ssh/tests/init.pp

include ssh

Modules and Classes

Intro to Puppet Enterprise 3.1.2 96 © 2013 Puppet Labs

The puppet apply Executable

• Compiles puppet manifest into a resource catalog.

• Uses the Resource Abstraction Layer to simulate or enforce the catalog locally.

Notes:

• In agent/master Puppet arrangements, agent nodes send their facts to the master, and the
master compiles the catalog using these facts. When using puppet apply, local facts are
used to build the catalog.

• When using puppet apply, remember to apply against Ules in the tests directory, not in the
manifests directory.

• Files in the manifests directory contain the resource deUnitions, but to implement, deUned
resources need to be declared and the Ules in the tests directory contain the declaration,
which will actually initiate action.

• There is no harm in running puppet apply against Ules in the manifests directory, but this
will not apply any changes.

• Running puppet apply against Ules in the tests directory can be used as an ad hoc
veriUcation or proof of concept to see how the module will manage the system once
implemented.

Modules and Classes

Intro to Puppet Enterprise 3.1.2 97 © 2013 Puppet Labs

Applying a Smoke Test
One-off manifest enforcement.

• Validate your code.

• Enforce a class locally one time only.

• Temporary changes that may be overridden on the next Agent run.

• puppet apply compiles a manifest Ule and enforces it immediately.

[root@training ssh]# puppet apply tests/init.pp
notice: /Stage[main]/Ssh/Service[sshd]/ensure: ensure changed 'stopped' to 'run...
notice: Finished catalog run in 0.14 seconds

Modules and Classes

Intro to Puppet Enterprise 3.1.2 98 © 2013 Puppet Labs

Simulating Change with Puppet
--noop mode simulates without enforcing.

• Resource Abstraction Layer can simulate events rather than taking action.

• Inform you of system drift and expected convergence actions.

[root@training sudoers]# puppet apply --noop tests/init.pp
notice: //File[/etc/sudoers]/mode: current_value 0646, should be 0440 (noop)
notice: Finished catalog run in 0.03 seconds

Modules and Classes

Intro to Puppet Enterprise 3.1.2 99 © 2013 Puppet Labs

Simulating Change with Puppet
--noop mode simulates without enforcing.

Once convergence actions are veriUed, Puppet can be run without --noop to enforce
the change in state.

[root@training sudoers]# puppet apply --noop tests/init.pp
notice: //File[/etc/sudoers]/mode: current_value 0646, should be 0440 (noop)
notice: Finished catalog run in 0.03 seconds
[root@training sudoers]# puppet apply tests/init.pp
notice: //File[/etc/sudoers]/mode: mode changed '0646' to '0440'
notice: Finished catalog run in 0.03 seconds

Individual resources may also be placed in noop mode.

package { 'kernel':
ensure => latest,
noop => true,

}

Notes:
Because Puppet can inspect the current state of your system and knows how to declare your resource to
be present or absent statefully, it can inspect what the current state of your system is and give you
meaningful information about what it would take to conUgure your system from its running state to the
state you have declared in your Puppet manifests.
The --noop Vag can be used in both the apply and agent roles. It can also be applied to individual
resources in the manifest itself. For example, just like --noop as the parameter for puppet apply,
you can enable simulation for individual resources when you want to monitor what would happen for a
given resource, should it be enforced.
Having simulation capabilities built into every Puppet type without additional effort from the systems
administrator is part of what separates Puppet from other conUguration management tools.

Modules and Classes

Intro to Puppet Enterprise 3.1.2 100 © 2013 Puppet Labs

Lab 5.2: Use Your Module

• Objective:

• Enforce your users class on your local agent.

• Steps:

• Create a smoke test that includes your class.
• Apply your smoke test with puppet apply.

Modules and Classes

Intro to Puppet Enterprise 3.1.2 101 © 2013 Puppet Labs

A Simple Group Resource Declaration
group { 'sysadmin':

ensure => present,
gid => '5000',

}

Additional Attributes

• name: The group name.

• ensure: Group resource state. Valid values are present, absent.

• gid: The numerical group ID.

• members: Members of the group.

Modules and Classes

Intro to Puppet Enterprise 3.1.2 102 © 2013 Puppet Labs

Puppet Describe
Want to know more?

$ puppet describe group

- **allowdupe**
Whether to allow duplicate GIDs. This option does not work on
FreeBSD (contract to the `pw` man page). Valid values are `true`,
`false`.

- **attribute_membership**
Whether specified attribute value pairs should be treated as the only
attributes of the user or whether they should merely be treated as the
minimum list. Valid values are `inclusive`, `minimum`.

......

......

Modules and Classes

Intro to Puppet Enterprise 3.1.2 103 © 2013 Puppet Labs

Lab 5.3: Expand Your Module

• Objective:

• Extend your module to manage multiple resource types.

• Steps:

• Modify your users class to manage a group resource.

• Test & apply your class locally.

Modules and Classes

Intro to Puppet Enterprise 3.1.2 104 © 2013 Puppet Labs

Classification

Classification

Intro to Puppet Enterprise 3.1.2 105 © 2013 Puppet Labs

Lesson 6: Classification
Objectives

At the end of this lesson, you will be able to:

• Describe node classiUcation.

• Write node declarations in your site manifest.

• Use the Puppet Enterprise Console to classify nodes.

Classification

Intro to Puppet Enterprise 3.1.2 106 © 2013 Puppet Labs

site.pp

The main entry point for entire Puppet network.

• The standard manifest Ule for the Puppet Master.

• Compiled any time an agent connects and requests a catalog.

• Can contain global resources and classes that apply to all nodes equally.

• Puppet Enterprise uses it to conUgure Ule backups.

• PE defaults to /etc/puppetlabs/puppet/manifests/site.pp.

Notes:
Puppet Enterprise default location of site.pp is /etc/puppetlabs/puppet/manifests/
site.pp. The location of site.pp can be conUgured with the manifest setting.

If you're using separate node deUnition Ules and import them into site.pp (with an import
nodes/*.pp, for example), any new Ules added won't get noticed until you restart the Puppet Master.

To ensure new Ules with node deUnitions are actually read, touch site.pp (or the importing Ule).

Classification

Intro to Puppet Enterprise 3.1.2 107 © 2013 Puppet Labs

Node Definitions
Include node speciUc conUguration.

• Puppet node deUnitions look similar to classes.

• The node deUnition corresponding to the Agent's name is declared
automatically.

• Only one node deUnition is ever declared.

• By default, the Agent node’s name is its certname.

node 'foo.puppetlabs.com' {
include ssh

}

When the node foo.puppetlabs.com connects to the Puppet Master, it will be
assigned the ssh class.

Notes:
An agent node's certname is how it is identiUed in the Puppet network. It is set at install time but can
be changed later. The certname is usually (but not always) the node's fully qualiUed domain name.

Best practices are to avoid any complex logic in node deUnitions and simply include the required
classes. This leads to a conUguration model that is more readable and more composable. It also makes
the transition to an External Node ClassiUer like the Enterprise Console a painless process.

Classification

Intro to Puppet Enterprise 3.1.2 108 © 2013 Puppet Labs

Regular Expressions
ConUgure nodes by nodename patterns.

• Regular expressions can be used to deUne nodes.

• The Urst match found is declared, regardless of speciUcity.

• Regular expressions are only evaluated if no exact match is found.

node /^web\d{3}.puppetlabs.com$/ {
include ssh
include apache
include mysql
include mywebapp

}

When a web application server, identiUed by a nodename of webXXX, connects to the
Puppet Master, it will be assigned the classes above.

Notes:
Remember that regular expressions are not as readable as simple strings are. As such, best practices are
to, when possible, minimize the use of regular expressions to make it more clear which node deUnition
will be enforced. See http://docs.puppetlabs.com/puppet/3/reference/langnodedeUnitions.html for more
information.

Classification

Intro to Puppet Enterprise 3.1.2 109 © 2013 Puppet Labs

http://docs.puppetlabs.com/puppet/3/reference/lang_node_definitions.html

Default Node
When no other node declaration matches.

node default {
notify { "${::fqdn} has no node definition": }

}

• You can specify a node named default.

• This will be used if no directly matching node is found.

• Sometimes used when many of only a single type of system are on a network.

Classification

Intro to Puppet Enterprise 3.1.2 110 © 2013 Puppet Labs

Demo
/etc/puppetlabs/puppet/manifests/site.pp

Classification

Intro to Puppet Enterprise 3.1.2 111 © 2013 Puppet Labs

Console Classification
Adding a class to the Console.

• "Add class" button in the console's sidebar:

• Type the new class's name in the text Ueld and click "Create":

Notes:
Students often ask why you must inform the Console of the classes that you can use. There are three
major reasons.
First, the Console is designed to be a standalone role. It is often installed on the same machine as the
Master, but not always. Due to this, it cannot simply parse source code to discover the classes. In that
case, why don't we have a REST API to query the Master for a list of all known classes?
The reason for that is that Puppet modules are often designed with internal classes that are never
meant to be called by end users. These might be params classes or internal composition classes.
Puppet currently does not have a way of marking the visibility of classes, so simply parsing source code
for a list of available classes works for the compiler, but it cannot work for a classiUer, which needs a list
of public classes only.

Classification

Intro to Puppet Enterprise 3.1.2 112 © 2013 Puppet Labs

The third major reason is that often system administrators do not want to expose their end users to all
the complexities of their system and will only list a smaller subset of classes for users to choose from.
This works well with the roles & pro$les pattern that is becoming common practice.

As a workaround to avoid manual data entry, rake tasks are available that can programmatically add
classes to the console.
See http://docs.puppetlabs.com/pe/latest/consoleclassesgroups.html#rake-api for more
information.

Classification

Intro to Puppet Enterprise 3.1.2 113 © 2013 Puppet Labs

http://docs.puppetlabs.com/pe/latest/console%5C_classes%5C_groups.html#rake-api

Console Classification
Assigning a Class to a Node.

Classification

Intro to Puppet Enterprise 3.1.2 114 © 2013 Puppet Labs

Console Classification
Node deUnition

Equivalent to:

node 'clark.puppetlabs.vm' {
include pe_accounts
include pe_mcollective
include pe_mcollective::roles::console
include pe_mcollective::roles::master

}

Classification

Intro to Puppet Enterprise 3.1.2 115 © 2013 Puppet Labs

Demo
ClassiUcation of nodes with the Console.

Classification

Intro to Puppet Enterprise 3.1.2 116 © 2013 Puppet Labs

Puppet Forge

Puppet Forge

Intro to Puppet Enterprise 3.1.2 117 © 2013 Puppet Labs

Lesson 7: Puppet Forge
Objectives

At the end of this lesson, you will be able to:

• Use the Puppet Module Tool to list installed modules.

• Find and install Puppet modules from the Forge.

• Explain how to share modules with others using the Forge.

Puppet Forge

Intro to Puppet Enterprise 3.1.2 118 © 2013 Puppet Labs

Puppet Forge
Share & Download Puppet Modules.

Puppet Forge

Intro to Puppet Enterprise 3.1.2 119 © 2013 Puppet Labs

Puppet Module Tool
From the command line, you can:

• Search for Modules.

• Install Modules (with dependencies).

• List installed Modules.

Puppet Forge

Intro to Puppet Enterprise 3.1.2 120 © 2013 Puppet Labs

Puppet Module List
[root@training ~]# puppet module list --tree
/etc/puppetlabs/puppet/modules
├── puppetlabs-pe_gem (v0.0.1)
├─┬ puppetlabs-mysql (v0.6.1)
│ └── puppetlabs-stdlib (v2.3.3) [/opt/puppet/share/puppet/modules]
├── bluetooth (v0.0.2)
├── motd (v2.2.1)
├── sudo (v0.0.1)
├── usermanagement (v0.0.1)
└── ssh (v0.0.1)
/opt/puppet/share/puppet/modules
└─┬ puppetlabs-pe_mcollective (v0.0.56)

├── puppetlabs-stdlib (v2.3.3)
└── puppetlabs-pe_accounts (v1.1.0)

[root@training ~]#

Notes:
The version information comes out of the module's metadata Ules that are required for posting modules
to the Forge. Since we haven't written our modules for sharing, they have no metadata and no
versioning or dependency information.
More information on publishing modules can be found at http://docs.puppetlabs.com/puppet/latest/
reference/modules_publishing.html.

Puppet Forge

Intro to Puppet Enterprise 3.1.2 121 © 2013 Puppet Labs

http://docs.puppetlabs.com/puppet/latest/reference/modules_publishing.html
http://docs.puppetlabs.com/puppet/latest/reference/modules_publishing.html

Puppet Module Search
[root@training ~] puppet module search mysql
Searching http://forge.puppetlabs.com ...
NAME DESCRIPTION AUTHOR KEYWORDS
DavidSchmitt-mysql Manage mysql databas... @DavidSchmitt mysql database
ghoneycutt-mysql Manage mysql clients... @ghoneycutt mysql database db sql
ghoneycutt-mylvmbackup Manage mysql backups... @ghoneycutt mysql backup db LVM
gastownlabs-ec2_mysql Creates a RAID volum... @gastownlabs mysql ec2 aws amazon
mstanislav-mysql_yum Puppet2. @mstanislav mysql
rocha-mysql @rocha
jonhadfield-wordpress Puppet module to ... @jonhadfield ubuntu mysql php
rgevaert-mysql @rgevaert mysql percona maridb
rgevaert-mysqlproxy Manage mysql-proxy. @rgevaert proxy mysql mysqlproxy
rcoleman-mysql This module is for ... @rcoleman
puppetlabs-mysql This module has evol... @bartavelle ubuntu mysql sql
[root@training ~]#

Puppet Forge

Intro to Puppet Enterprise 3.1.2 122 © 2013 Puppet Labs

Demo
Using the Forge

Puppet Forge

Intro to Puppet Enterprise 3.1.2 123 © 2013 Puppet Labs

Additional Puppet Concepts

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 124 © 2013 Puppet Labs

Lesson 8: Additional Puppet Concepts
Objectives

At the end of this lesson, you will be able to:

• Discuss the following concepts as they pertain the Puppet IT Automation
Software Solution

• Puppet Resources
• Puppet Resource Relationships
• Puppet Variables
• Puppet Templates
• Puppet Report Handlers

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 125 © 2013 Puppet Labs

Puppet Resources
• Resources are building blocks.

• They can be combined to make larger components.

• Together they can model the expected state of your system.

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 126 © 2013 Puppet Labs

Core Resource Types
• user

• group

• host

• cron

• exec

• file

• package

• service

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 127 © 2013 Puppet Labs

Meta Resource Types
• notify

• filebucket

• resources

• schedule

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 128 © 2013 Puppet Labs

Platform Specific Resource Types
Core

• mcx - OS X Client Management

• yumrepo - RedHat ::osfamily software repo

• zfs - ZFS Ulesystems

• selmodule - SELinux module

Via Forge modules

• registry_value - Windows registry key values

• netdev_l2_interface - Layer 2 interface on Cisco or Juniper device

• f5 - F5 device conUg

• netapp - NetApp network storage devices

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 129 © 2013 Puppet Labs

Component Specific Resource Types
• augeas

• k5login

• selboolean

• selmodule

• mailalias

• maillist

• sshkey

• ssh_authorized_key

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 130 © 2013 Puppet Labs

Resource Limits
Providers are limited to functionality exposed by the OS.

Example: the user Resource Type
Provider Allow Duplicates Manage Homedir Manage Passwords Manage Solaris RBAC

directoryservice ✓

hpxuseradd ✓ ✓

ldap ✓

netinfo ✓

pw ✓ ✓

user_role_add ✓ ✓ ✓ ✓

useradd ✓ ✓ ✓

windows_adsi ✓ ✓

Notes:
For example, only the Solaris userroleadd provider is able to manage Solaris user roles.

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 131 © 2013 Puppet Labs

Dependency Management
How does Puppet prioritize the enforcement of resources?

• Puppet does not enforce resources top down, based on their position in the
manifest.

• Instead, Puppet checks for applicable dependencies between resources in the
manifest code.

• Puppet then reorders resource enforcement to meet the determined
relationship requirements.

Manifests are parsed in source order when compiling,
but the resource enforcement order is driven by the dependency graph.

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 132 © 2013 Puppet Labs

Implicit Dependencies
• Specifying each and every dependency is tedious.

• Puppet is smart enough to recognize that certain resources always depend on
one another.

• For these related resources Puppet automatically creates implicit
dependencies.

Notes:
Implicit Resource relationships are superseded by explicit Resource relationship declarations.

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 133 © 2013 Puppet Labs

Package | File | Service
One of the most useful and common design patterns used in production.

• We commonly specify several resources together to model a complete
conUguration.

• A reasonable workVow when installing a service is to:

• Install a package.
• ConUgure one or more conUg Ules.
• Enable the service.

• To model this in puppet, we use the package-Ule-service design pattern.

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 134 © 2013 Puppet Labs

Workflow recap:

1. Install package.
2. ConUgure Ule.
3. Enable service.
4. Restart service when conUg Ule is updated.

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 135 © 2013 Puppet Labs

Variables
Variables are preUxed with '$':

$httpd_dir = '/etc/httpd/conf.d'

Variables can be used as resource titles:

file { $httpd_dir:
ensure => directory,

}

Variables can be used as attribute values:

file { '/etc/httpd/conf.d/README':
ensure => file,
content => $readme_content,

}

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 136 © 2013 Puppet Labs

ERB Templates
Ruby's built-in templating language.

• Templates are mostly plain text Ules.

• Inserting ERB tags allows you to:

• Display or act on the contents of variables.
• Alter the Vow of logic.
• Include Ruby code to perform calculations or iterate.

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 137 © 2013 Puppet Labs

Arrays
The Puppet language supports simple arrays:

$somearray = ['one', 'two', 'three']

Arrays can be used as an argument to some resource parameters:

user { 'elvis':
ensure => present,
home => '/home/elvis',
uid => '5000',
gid => 'hounddog',
shell => '/bin/bash',
groups => ['jailhouse', 'surfer', 'legend'],

}

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 138 © 2013 Puppet Labs

Agent Reports
The Puppet Agent can be conUgured to generate and send a report to the Puppet
Master after every puppet run.

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 139 © 2013 Puppet Labs

What's in a Report?
Basic Example

info: Applying configuration version '1328975856'
notice: Hello World!
notice: /Notify[example]/message: defined 'message' as 'Hello World!'
notice: Finished catalog run in 0.03 seconds

Transaction Data
notice: /Notify[example]/message: defined 'message' as 'Hello World!'

Metric Data
notice: Finished catalog run in 0.03 seconds

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 140 © 2013 Puppet Labs

Report Handlers
Process reports on the Master

Built-in Report Handlers:

• http/https

• log

• puppetdb

• tagmail

• rrdgraph

• store

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 141 © 2013 Puppet Labs

Documentation
Built in type documentation.

[root@training ~]# puppet describe <type> [-s]

[root@training ~]# puppet describe --list

[root@training ~]# puppet doc -r [type|report|providers|...]

• Use the same docstrings used to generate documentation pages.

• The -s Vag provides a type summary only.

• The --list argument will list all types known to Puppet.

• puppet doc can output Markdown or PDF Ules.

• We use it to generate docs.puppetlabs.com.

Notes:
For more information regarding Resource Types: http://docs.puppetlabs.com/references/latest/type.html

Additional Puppet Concepts

Intro to Puppet Enterprise 3.1.2 142 © 2013 Puppet Labs

http://docs.puppetlabs.com
http://docs.puppetlabs.com/references/latest/type.html

Course Conclusion

Course Conclusion

Intro to Puppet Enterprise 3.1.2 143 © 2013 Puppet Labs

Questions & Next Steps
Still Learning:

• Learning Puppet Tutorials - http://docs.puppetlabs.com/learning/

• Download the Learning Puppet VM - http://puppetlabs.com/learning

• Puppet Labs Workshop - https://puppetlabs.com/learn

Extending Puppet:

• Download Puppet Enterprise - manage 10 nodes for free

• http://info.puppetlabs.com/download-pe.html

• Puppet Docs - http://docs.puppetlabs.com/

• Puppet Forge - http://forge.puppetlabs.com/

• Puppet Training - http://puppetlabs.com/category/events/upcoming/

Notes:
Need more technical detail or product drill down?
Schedule a follow-up call with a Puppet Labs Professional Services Engineer.

Course Conclusion

Intro to Puppet Enterprise 3.1.2 144 © 2013 Puppet Labs

http://docs.puppetlabs.com/learning/
http://puppetlabs.com/learning
https://puppetlabs.com/learn
http://info.puppetlabs.com/download-pe.html
http://docs.puppetlabs.com/
http://forge.puppetlabs.com/
http://puppetlabs.com/category/events/upcoming/

Puppet Education Roadmap

Course Conclusion

Intro to Puppet Enterprise 3.1.2 145 © 2013 Puppet Labs

!

Appendix

!

Intro to Puppet Enterprise 3.1.2 © 2013 Puppet Labs

Appendix

Appendix

Glossary
!
module
Self-contained bundles of code and data. !
idempotent
Able to be applied multiple times with the same outcome.

define
 To specify the contents and behavior of a class or a defined resource type. Defining a class or
type doesn't automatically include it in a configuration; it simply makes it available to be
declared.

declare
To direct Puppet to include a given class or resource in a given configuration. To declare
resources, use the lowercase file {"/tmp/bar":} syntax. To declare classes, use the include keyword
or the class {"foo":} syntax. (Note that Puppet will automatically declare any classes it receives
from an external node classifier.)

You can configure a resource or class when you declare it by including attribute/value pairs.

Facter
Puppet's system inventory tool. Facter reads facts about a node (such as its hostname, IP address,
operating system, etc.) and makes them available to Puppet.

Facter includes a large number of built-in facts; you can view their names and values for the
local system by running facter at the command line.

In agent/master Puppet arrangements, agent nodes send their facts to the master.

Intro to Puppet Enterprise 3.1.2 © 2013 Puppet Labs

manifests
This directory holds the module's Puppet code.

Each .pp file should contain one and only one class

or defined type.

Filenames and class/defined type names are related;

see the examples below.

Within a module, the special $module_name variable

always contains the module's name.

apache/manifests/init.pp

class apache {
 ...
}

Init.pp is special; it should contain a class (or define)

with the same name as the module.

apache/manifests/vhost.pp

define apache::vhost ($port, $docroot) {
 ...
}

Other classes (and defines) should be named

modulename::filename (without the .pp extension).

apache/manifests/config/ssl.pp

class apache::config::ssl {
 ...
}

Subdirectories add intermediate namespaces.

lib
This directory holds Ruby plugins, which can add features

to Puppet and Facter.

apache/lib/puppet/type/apache_setting.rb
A custom type.

apache/lib/puppet/parser/functions/htpasswd.rb
A custom function.

apache/lib/facter/apache_confdir.rb
A custom fact.

files
Nodes can download any files in this directory from

Puppet's built-in file server.

Use the source attribute to download file contents

from the server.

Use puppet:/// URIs to specify which file to fetch.

Files in this directory are served at

puppet:///modules/modulename/filename.

apache/files/httpd.conf
To fetch this file:

file {'/etc/apache2/httpd.conf':
 ensure => file,
 source => 'puppet:///modules/apache/httpd.conf',
}

apache/files/extra/ssl
Puppet's file server can navigate any subdirectories:

file {'/etc/apache2/httpd-ssl.conf':
 ensure => file,
 source => 'puppet:///modules/apache/extra/ssl',
}

templates
This directory holds ERB templates.

Use the template function to create a string by

rendering a template.

Use the content attribute to fill file contents with a

string.

Template files are referenced as

modulename/filename.erb.

apache/templates/vhost.erb
To use this template:

file {'/etc/apache2/sites-enabled/wordpress.conf':
 ensure => file,
 content => template('apache/vhost.erb'),
}

Puppet Module Cheat Sheet
Modules are directories with a predictable structure.

Puppet can automatically load manifests, files, and plugins from modules in its modulepath.

Use puppet --configprint modulepath to see where Puppet expects to find modules on your system.

Example Module: /etc/puppetlabs/puppet/modules/apache

Configuration Management as Lego

by Adrien Thebo1

Configuration management is hard. Configuring systems properly is a lot of hard work, and
trying to manage services and automate system configuration is a serious undertaking.

Even when you've managed to get your infrastructure organized in Puppet manifests or
Chef cookbooks, organizing your code can get ugly, fast. All too often a new tool has to be
managed under a short deadline, so any sort of code written to manage it solves the
immediate problem and no more. Quick fixes and temporary code can build up, and before
you know it, your configuration management becomes a tangled mess. Nobody intends for
their configuration management tool to get out of hand, but without guidelines for
development, all it takes is a few instances of git commit -a -m 'Good enough'
for the rot to set in.

Organizing configuration management code is clearly a good idea, but how do you do it?
For normal development, there are many of design patterns for laying out and organizing
programs and libraries. Traditional software development has had around 40 years to
mature, and config management is fairly young by comparison and hasn't had the time to
have formal best practices.

This is a proposal for an organizational pattern that I'm calling the "Lego pattern."
Admittedly, there's nothing revolutionary about these ideas. To be honest, all the ideas
espoused in this article are simply applications of the unix philosophy2. This pattern can
be used to organize code for any configuration management tool, but for the sake of
brevity, I'll be using Puppet to provide examples.

The Base Blocks

Fundamental behavior is provided by a set of base modules. These are akin to the
rectangular Lego blocks - they're generic, they're reusable, and you can swap them out for
similar pieces. Modules like this should be focused on three tenets of the Unix philosophy:
the Rule of Modularity, the Rule of Composition, and the Rule of Separation3.

1

1 https://twitter.com/nullfinch

2 http://en.wikipedia.org/wiki/Unix_philosophy

3 http://www.faqs.org/docs/artu/ch01s06.html

https://twitter.com/nullfinch
https://twitter.com/nullfinch
http://en.wikipedia.org/wiki/Unix_philosophy
http://en.wikipedia.org/wiki/Unix_philosophy
http://www.faqs.org/docs/artu/ch01s06.html
http://www.faqs.org/docs/artu/ch01s06.html

When writing base modules, they should be, well, modular. They should do one thing and
do it well. For instance, a module for installing a web application should not manage a
database service, neither should it configure logging. while these are valid concerns,
they're not directly related. Managing only one service in one module makes that module
more reusable and more maintainable.

Base block modules should also be built to be composed with other modules. If a module
only handles one service, then it can also safely interact with similar modules. For
instance, that web app module only handles installing and running the web app, another
module can handle backing up files, and they can be used together to solve the whole of a
business problem. If people want to use your module and also back up related files, they
won't be forced to use your backup tool - they can use your module to provide the service
and use their module to handle backups.

Lastly, base block modules should be built to hide the underlying implementation, and
provide a fairly complete interface to the service that they're managing. Modules like this
only need to be manipulated via parameters that they expose (much like software
libararies), so you can see what options you can tune and configure without having to have
complete mastery of the service that its managing. The advantage of this is that you have
a clean separation between how the core elements of the service work, and how you're
implementing them.

The puppetlabs/apache4 module is a good example of this. The apache module is designed
to give you the set of tools you'll need to manage almost any apache configuration
regardless of the underlying system. It hides the system-specific configuration and
presents you with a simpler interface to configure vhosts, apache modules, and further to
ensure that the necessary packages are installed and the service is running. When using
this module you could have a vhost defined like this:

apache::vhost { 'www.example.com':
 vhost_name => '192.126.100.1',
 port => '80',
 docroot => '/home/www.example.com/docroot/',
 logroot => '/srv/www.example.com/logroot/',
 serveradmin => 'webmaster@example.com',
 serveraliases => ['example.com',],
}

The apache::vhost provides all the options that you could tune, and you set them as
needed. You don't need to have to touch the underlying templates used, or know the

2

4 http://forge.puppetlabs.com/puppetlabs/apache

http://www.example.com
http://www.example.com
http://www.example.com/docroot/'
http://www.example.com/docroot/'
http://www.example.com/logroot/'
http://www.example.com/logroot/'
mailto:webmaster@example.com
mailto:webmaster@example.com
http://forge.puppetlabs.com/puppetlabs/apache
http://forge.puppetlabs.com/puppetlabs/apache

syntax of apache configuration, or really anything about how the module works, aside from
the options presented by the vhost.

Fundamentally, the apache module does one thing, and does one thing well. It doesn't
handle things like monitoring, backups, and it doesn't try to run back end services. You can
use this module to run apache, and combine it with other modules to build the rest of your
configuration.

The Weird Blocks and Code Layout

Of course, every site has their own internal services and applications, and this is where the
weird blocks come in. Weird blocks are analogous to the Lego blocks that have axles or
hinges sticking out: they're designed to do something very specific and can't really be
reused anywhere else. In turn, nothing else can provide the behavior that they provide.

Generally, these generally should be written like base blocks but with a couple of twists.
One twist is that since these modules cannot be reused elsewhere, it can make sense to
embed site specific data in templates and manifests. Secondly, these modules are located
in a different place on the filesystem. Using the Puppet modulepath setting or chef
cookbook_path setting, you can specify a list of locations to check for modules. You can
take advantage of this to locate reusable base blocks in one place, and weird blocks in
another place.

!"" base-blocks
$"" apache
!"" manifests
!"" init.pp
!"" ssl.pp
$"" vhost.pp
$"" templates
#
!"" weird-blocks
$"" boardie
!"" manifests
$"" init.pp
$"" templates
$"" config.yml.erb

Differentiating between base blocks and weird blocks is surprisingly powerful. The
distinction makes publishing your base-blocks easier, and allows you to easily tell what
sort of work a module is expected to do.

3

This separation can also be used to control access - perhaps one team manages an internal
service, so they can handle the configuration management for that service. However this
team won’t be administering the rest of your infrastructure. Giving them access to the
weird-blocks directory means they’ll be able to do their job, but they’ll be bound to
respecting the interfaces of the base-blocks instead of taking shortcuts and putting site
specific changes in your base blocks.

Composing Blocks into Services (like Lego kits)

So we have all of these well defined modules and classes, but without assembling them
you have a pile of Lego - something that's not useful and mainly exists to cause searing
pain when you step on one. Therefore, we need some sort of concept, like a site
configuration, where you take these individual parts and snap them into configurations
that work for you.

Building on top of the multiple module-path idea outline, assembled modules go in a site-
services directory, like so:

!"" site-services
$"" infrastructure
$"" manifests
!"" dhcp.pp
!"" mrepo.pp
!"" webserver.pp
$"" postgresql.pp

Within this site-services directory, you build out modules that provide a complete solution.
For instance, the infrastructure::postgresql module would do things like use
the postgresql module to install and run the postgres service, use the nagios module for
monitoring postgresql, use the backupexec module to back it up, and so forth. In addition,
this is where you inject the site-specific configuration into the modules, so this is where
you make the underlying modules work for your infrastructure.

Things in site-services generally won't directly include resources and will only include
other classes. Put another way, they exist almost entirely to aggregate classes into usable
units and configure their settings. The following example would be an example of
everything you would need to bring up the mrepo5 infrastructure on a node:

4

5 http://dag.wieers.com/home-made/mrepo/

http://dag.wieers.com/home-made/mrepo/
http://dag.wieers.com/home-made/mrepo/

class infrastructure::mrepo {

 motd::register {'mrepo': }

 class { 'staging':
 path => '/opt/staging',
 owner => 'root',
 group => 'root',
 mode => '0755',
 }

 $mirror_root = '/srv/mrepo'

 class { 'mrepo::params':
 src_root => $mirror_root,
 www_root => "${mirror_root}/www",
 user => "root",
 group => "root",
 }

 class { 'mrepo::exports':
 clients => '192.168.100.0/23',
 }

 # Bring in a list of the actual repositories to instantiate
 include infrastructure::mrepo::centos
}

Using this model anyone can use the mrepo module, and our own implementation can be
used with include infrastructure::mrepo. We have a clear separation of the
mrepo implementation and how we're using it.

5

Roles: They’re Like Lego Cities

At this point, we have the modules built in site-services that configure our environment
the way we need it. The final step is taking these services and grouping them into
configurations that we'll apply to machines. For instance, bringing up a new webserver
could involve including modules from site-services to set up our configurations SSH,
Apache, and Postgres. Bringing up a new host for building packages would mean bringing
in our site-specific configurations for Tomcat, Jenkins, and compilers and such. This would
give us a hierarchy like this:

!"" site-roles
!"" buildhosts
$"" manifests
!"" init.pp
!"" jenkins.pp
$"" compilers.pp
#
$"" webservices
!"" manifests
!"" redmine.pp
$"" wordpress.pp

Each manifest in here would be a further abstraction on top of the site-services module.
They would look something like this:

class webservices::redmine {

 include infrastructure::apache::passenger
 include infrastructure::mysql

 class { 'custom_redmine':
 vhost_name => $fqdn,
 serveraliases => "redmine.${domain} redmine-${hostname}.$
{domain}",
 www_root => '/srv/passenger/redmine',
 }

 pam::allowgroup { 'redmine-devs': }
 pam::allowgroup { 'redmine-admins': }

 sudo::allowgroup { 'redmine-admins': }
}

6

http://seboslegoschool.edublogs.org/files/2011/08/legoCity-2cyt7cu.jpg
http://seboslegoschool.edublogs.org/files/2011/08/legoCity-2cyt7cu.jpg

This final layer takes all our implementations of apache and mysql and applies them,
controls system access, and provides for a complete redmine stack. Including this one
class, webservicse::redmine, is all it takes to provide for every requirement of a
redmine instance, so deploying more machines for a specific role means including a single
self contained class.

This gives us the following hierarchy:

• base-blocks and weird-blocks provide basic functionality
• site-services assemble blocks into functional services
• site-roles assemble services into fully functional and independent roles

If you use this pattern, in no time, you could have configuration management code that is
about as awesome as a seven foot replica of Serenity.

(image credit - brickfrenzy6)

Article Source:
http://sysadvent.blogspot.com/2012/12/day-13-configuration-management-as-legos.html

7

6 http://www.flickr.com/photos/brickfrenzy/

! ! ! ! ! ! ! ! ! ! ! ! !
!

!
! !

C
er

tifi
ca

te
 o

f C
om

pl
et

io
n

at
te

nd
ed

ho
ur

s
of

Pu
pp

et
 L

ab
s

tra
in

in
g

an
d

co
m

pl
et

ed
 th

e!

In
tr

od
uc

tio
n

to
 P

up
pe

t E
nt

er
pr

is
e

co
ur

se
.

(In
st

ru
ct

or
 S

ig
na

tu
re

)
(D

at
e)

	Introduction
	to

	Puppet Enterprise
	Course Objective
	Course Outline
	About Puppet
	Overview: About Puppet
	Objectives

	About Puppet Labs
	Puppet Customers
	Current State of IT Automation
	Introducing Puppet
	Configuration Management for systems administrators.

	Puppet Enterprise
	Puppet Enterprise Stack
	Simplifies installation and configuration.

	Resources to Help You Succeed
	How Puppet Works
	How Puppet Works
	Define

	How Puppet Works
	Define

	How Puppet Works
	Composable Configurations

	Data Flow
	How Puppet manages data flow from Individual Nodes

	Basic Puppet Concepts
	Lesson 2: Basic Puppet Concepts
	Objectives

	A Use Case
	You need to manage a user, Elmo.

	Existing Utilities
	Tools built into most distros that can help:

	Command Line Concerns
	Do It Yourself
	You could do something like this:

	But what about...
	And managing users is easy.

	The Puppet Way
	A light at the end of the tunnel:

	Desired State
	Describe the state you want.

	Robust Logging
	Any convergence actions are reported.

	Maintaining State
	Infrastructure as Code
	or Executable Documentation

	Idempotency
	Puppet Resources
	Resource Declarations
	Resources are managed in terms of attributes.
	Attributes describe the state that Puppet should converge the resource to.

	User Resource
	Sample Attributes

	Resource Declarations
	Declarative Modeling Language
	Comparison

	Abstraction
	Resources in Puppet are abstracted from underlying providers.

	Resource Abstraction Layer
	Provides a consistent model for resources across supported platforms.

	Types
	Similar resources are grouped into resource types.

	Providers
	Each resource type has one or more providers.
	The interface between the underlying OS and the resource types.

	Many Providers
	Providers for the package type:

	Enforcement Order
	Puppet enforces resources based on dependencies between them.

	Classroom Environment
	Lesson 3: The Classroom Environment
	Objectives

	Lab 3.1: Pre-installation
	Lab 3.2: Installation
	Facter
	Exercise 3.3: Facter
	Puppet Resource
	Puppet Resource Query
	Executing puppet resource and providing a resource type and title returns the state of a resource.

	Puppet Resource Query
	Executing puppet resource and providing a resource type queries all known instances of that resource on the system.

	Exercise 3.4: Puppet Resource
	Puppet Roles
	Lesson 4: Puppet Roles
	Objectives

	Puppet Configuration Management
	The Agent Daemon
	puppet agent runs on all managed nodes.

	Example Configuration
	

	Useful Command Line Arguments
	The Master Daemon
	puppet master runs on the central server.

	Agent/Master Architecture
	Puppet Enterprise Console
	Provides a graphical interface to your Puppet infrastructure.

	Infrastructure Overview
	Node Details and Statistics
	Browsing Latest Reports
	Viewing a Report
	Demo
	Viewing report details in Console

	Certificate Management
	Puppet Agent Bootstrap
	Unless autosigning is enabled, each new certificate must be signed explicitly.

	Working With Certificates
	List Outstanding Certificates

	Working With Certificates
	List All Certificates

	Working With Certificates
	Sign a certificate
	Revoke a certificate
	Remove a certificate
	(output trimmed for slide)

	Working With Certificates
	Pre-create certificates on the master.

	Signing Certificates with PE Console
	Viewing Node Requests
	Rejecting and Approving Node Requests
	Demo
	Triggering a Puppet Run

	Modules and Classes
	Lesson 5: Modules and Classes
	Objectives

	Puppet Classes
	Node Definitions
	Multiple classes are declared together to represent a role.

	Classes are Reusable
	Classes are Singleton
	You only ever get one instance of the class in the catalog.

	Modules
	Auto-loading of Classes
	import is considered harmful.

	Auto-loading of Classes
	Modules enable class auto-discovery.

	Auto-loading of Classes
	Class names can be broken into namespaces.

	Lab 5.1: Build Your First Module
	Define and Declare
	Now that we have built our class, how do we use it?

	Defining vs Declaring
	Declaration Testing
	Preparing to test our declarations:

	The puppet apply Executable
	Applying a Smoke Test
	One-off manifest enforcement.

	Simulating Change with Puppet
	--noop mode simulates without enforcing.

	Simulating Change with Puppet
	--noop mode simulates without enforcing.

	Lab 5.2: Use Your Module
	A Simple Group Resource Declaration
	Additional Attributes

	Puppet Describe
	Lab 5.3: Expand Your Module
	Classification
	Lesson 6: Classification
	Objectives

	site.pp
	The main entry point for entire Puppet network.

	Node Definitions
	Include node specific configuration.

	Regular Expressions
	Configure nodes by nodename patterns.

	Default Node
	When no other node declaration matches.

	Demo
	

	Console Classification
	Adding a class to the Console.

	Console Classification
	Assigning a Class to a Node.

	Console Classification
	Node definition
	Equivalent to:

	Demo
	Classification of nodes with the Console.

	Puppet Forge
	Lesson 7: Puppet Forge
	Objectives

	Puppet Forge
	Share & Download Puppet Modules.

	Puppet Module Tool
	Puppet Module List
	Puppet Module Search
	Demo
	Using the Forge

	Additional Puppet Concepts
	Lesson 8: Additional Puppet Concepts
	Objectives

	Puppet Resources
	Core Resource Types
	Meta Resource Types
	Platform Specific Resource Types
	Core
	Via Forge modules

	Component Specific Resource Types
	Resource Limits
	Providers are limited to functionality exposed by the OS.
	Example: the user Resource Type

	Dependency Management
	How does Puppet prioritize the enforcement of resources?
	Manifests are parsed in source order when compiling,
	but the resource enforcement order is driven by the dependency graph.

	Implicit Dependencies
	Package | File | Service
	One of the most useful and common design patterns used in production.

	Workflow recap:
	Variables
	ERB Templates
	Ruby's built-in templating language.

	Arrays
	Agent Reports
	What's in a Report?
	Basic Example
	Transaction Data
	Metric Data

	Report Handlers
	Process reports on the Master

	Documentation
	Built in type documentation.

	Course Conclusion
	Questions & Next Steps
	Puppet Education Roadmap
	Thank You
	for attending

	Introduction to Puppet

